If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=7+34H-16H^2
We move all terms to the left:
-(7+34H-16H^2)=0
We get rid of parentheses
16H^2-34H-7=0
a = 16; b = -34; c = -7;
Δ = b2-4ac
Δ = -342-4·16·(-7)
Δ = 1604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1604}=\sqrt{4*401}=\sqrt{4}*\sqrt{401}=2\sqrt{401}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{401}}{2*16}=\frac{34-2\sqrt{401}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{401}}{2*16}=\frac{34+2\sqrt{401}}{32} $
| 2(5x-3)-3x(2x-4)=38 | | 6{2x-1}=4+7x | | x5=20 | | 3x-6+3x=60 | | q-805=-409 | | 3(4b-7)=12b-7 | | 7y-1+5y=23 | | 11=4n-9 | | 4+(x-1)-4=16 | | 28+7z=77 | | 3h+2=17h= | | H=355t-16t^2 | | (6y+8)2=75 | | s+18+s+12+4s=180 | | 3(t-18)=6 | | 12(n)=108 | | 2c+12=50 | | -24=2(y-4)+6y | | y—4=−7 | | F=(5x1.8)+32 | | 8(x+2)=-6(x-5) | | 3(t−18)=6 | | -x-6=-2x+7 | | 2x^2-18x-1944=0 | | 2k-45=27 | | 5(2x-1)+x+17=6x+6(x+2) | | –z+–9=6 | | 2(3x+9)=-29+17 | | -21=-2p | | 5(3x+9)=3(5x+15) | | 259=-5(-7-8v)-8v | | 9(2x+3)-2(x-4)=6x+12 |